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Research Possibilities with Add Health
Genetic Data
1. “Chip” heritability (GCTA)
2. Polygenic Scores
3. Mendelian Randomization

GOAL: Offer a structure for thinking about how

genetically informed research can be done with
Add Health.



1. “Chip” heritability with GCTA
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1. “Chip” heritability with GCTA
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GCTA: A two-step process

e Step 1: Compute genetic similarities.
— Many metrics for genetic similarity are available.

GCTA uses something akin to a weighted
correlation.
— Need to restrict to genetically homogenous

group due to way genetic similarities are
computed.



GCTA: A two-step process

e Step 2. Estimate
yi ~ N[X{B+i,0 "

where
v ~ MVN|0, gé Al

* Covariance matrix for gamma is based on the
genetic similarities estimated in step 1.
* Heritability: 2
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GCTA is popular.

Common SNPs explain a large proportion of the heritability for human height
J Yang, B Benyamin, BP McEvoy, S Gordon... - Nature ..., 2010 - nature.com

SNPs discovered by genome-wide association studies (GWASs) account for only a small

fraction of the genetic variation of complex traits in human populations. Where is the

remaining heritability? We estimated the proportion of variance for human height ...

Cited by 1723 Related articles All 28 versions Web of Science: 1163 Cite Saved More
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Turkheimer’s Laws

e GCTA has been used to estimate univariate
heritabilities for a great many traits.



Turkheimer’s Laws

e GCTA has been used to estimate univariate
heritabilities for a great many traits.

® First Law. All human behavioral
traits are heritable.

® Second Law. The effect of being Three Laws of Behavior Genetics and

raised in the same family is What They Mean
smaller than the effect of genes. ) ] :

: : Eric Turkheimer
® Third Law. A substantial portion

of the variation in complex hu-

man behavioral traits is not ac-

counted for by the effects of

genes or families.

* Need to think carefully about a paper
focusing simply on univariate heritability.



More intriguing possibilities

* Genetic correlation (rG)

— Estimating pleiotropy, or the extent to which
common genetics are influencing multiple traits.

* GXE Analyses

— Examining changes in genetic influences over
time.



Table 3

Bivariate genome wide covariance estimates for education and three health

OutCOmes.

Body mass Depression Self-rated

index health
Genelic varianoe
Health 10668 ooy 0128
Education 2.139 2173 20142
Cov (healtheducation)  —0.159 —0.089 -0.477
Environmental varianoe
Health 14677 02E 0576
Education 4059 4025 4055
Cov (healtheducation)  —0.788 —0.003 —0.178
Phenotypic variance
Health 25,345 0034 0704
Education 61497 G198 61498
Heritability
Health 0421 0183 0,181
Education 0345 0351 0346
L —LO33 —0.746 —-0912
95% Cl (rg) (—0297,.331) (-0, 0201} {-1.0,-0374)
TogL — 14860413 —B37 535 —EY.67E
logl [r =0) — 14860429 —E841.035 70894394
LET 0032 G994 9432
df 1 1 1
P, < 04 004 0,001

Mote: Data come from the Health and Retirement Study; n = 4233,

What can genes tell us about the relationship between education and

health?™

Genes as potential
confounder.

Jason D. Boardman **, Benjamin W. Domingue “, Jonathan Daw "

* University of Colorade, Boulder, United States

b University of Alabama, Bimningham, United States
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Fig. 3. Bivariate estimates of the extent to which the heritability of GCSE
can be accounted for by each of the nine predictors, respectively (path aq»
from the Cholesky decomposition; Fig. S1).

The high heritability of educational achievement
reflects many genetically influenced traits, not
just intelligence

Eva Krapoh!®?, Kaili Rimfeld™', Nicholas G. Shakeshaft®, Made] Trzaskowski®, Andrew MdMillan®,
Jean-Baptiste Pingault™®, Kathryn Asbury®, Nicole Harlaar®, Yulia Kovas™®, Philip 5. Dale®, and Robert Plomin®2



Figure 2. Bar Charts of the SNP-heritability estimates in number of children ever born

(NEB) and age at first birth (AFB) for the different model specifications from Ta
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Model specification

Note: SNP-heritability as the sum of genetic variance over the total variance in Model
specification 1 = amongst all individuals, 2 = amongst individuals living within the same
population, 3 = amongst individuals living within the same demographic birth cohort be
either before or after fertility postponement, 4 = amongst individuals living in the same
population and demographic birth cohort, dots = estimate, lines = estimate + 1 SE, The
corresponding table to Figure 2 an be found in Supporting Table 54.

“Our findings imply that the
environment strongly modifies
genetic effects on the tempo
and quantum of fertility, that
currently ongoing natural
selection is heterogeneous
across environments, and that
gene-environment interactions
may partly account for missing
heritability in fertility.”

Mega-analysis of 31,396 individuals from 6 countries

uncovers strong gene-environment interaction for human fertility

Felix C. Tropfl'z', Renske M. Verweijz, Peter J. van der Most®, Gert Stulp®, Andrew Bakshi®,
Daniel A. Brile],rﬁ, Matthew Robinson®, Anastasia Nyman?, Ténu Esko™, Andres Metspalue,
Sarah E. Medland'’, Nicholas G. Martin'", Harold Snieder”, 5. Hong Lee 51 Melinda C. Mills



A word of caution

* There is a substantial back-and-forth about
the statistical properties of GCTA estimates.

— Kumar et al. Limitations of GCTA as a solution to
the missing heritability problem. PNAS 2015

— bioRxiv responses:
* Gamazon & Park

* Yang et al.
— Kumar et al. have responsed to the response!



A word of caution

* There is a substantial back-and-forth about
the statistical properties of GCTA estimates.

— Kumar et al. Limitations of GCTA as a solution to
the missing heritability problem. PNAS 2015

— bioRxiv responses:
* Gamazon & Park

* Yang et al.
— Kumar et al. have responsed to the response!

* Key Question: How sensitive are GCTA
estimates to population stratification in
relatively homogeneous samples?



2. Polygenic Scores (PGS)

eLike a credit score

Pooled

—loggip-valua)
= L) £ {=1] L=~

Chromosoma

+
SNP1 SNP2 ... SNP 1,000,000
Pl 0 1 2
P2 i 0 0
P3 1 ¢ 1
P1000 2 1 2

1,000 x 1,000,000 matrix; each cell € {0, 1, 2}.



2. Polygenic Scores (PGS)
. . Polygenic Risk and the Developmental Progression
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Examples

* Will go through examples of this type of
research with

— educational attainment
— BMI

* First question: how robust is prediction in
context of educational attainment PGS?



Predict out of sample
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Fig. 2. Solid lines show results from regressions of EduYears on linear
polygenic scores in a set of unrelated individuals from the QIMR (N =
3526) and STR (N = 6770) cohorts. Dashed lines show results from

regressions of Cognilive function on linear polygenic scores in a sample
from STR (N = 1419). The scores are constructed from the meta-analysis
for either EduYears or College, excluding the QIMR and STR cohorts.



Predicts net of mom’s education

Table 4: Regression Models of Respondent’s Total Years of Completed Education with Standard Errors Robust

to Clustering on Family ID, by Sample

Health and Retirement Study (1) (2) (3
Female sex —0.327 —0.40* —0.30¢
(0.06) (0.03) (0.06)
Age -0.01* —-0m4t  —o017
(0.00) (0.00) (0.00)
Survey year 0.02 0.00 0.02
(0.01) (0.01) (0.01)
Mother’s highest grade completed 0.30° 0.281
(0.01) (0.01)
Resp. educational genetic score, std. 041t 0.33f
(0.03) (0.03)
Constant —34.61 -8404" —43.16
(2671)  (2804)  (26.44)
R? 0.14 0.05 0.16
R? for score w/out other controls 0.03

c"gg, sociological science

Is the Effect of Parental Education on Offspring
Biased or Moderated by Genotype?

Dalton Conley® Benjamin W. Domingue,” David Cesarini,* Christopher
Dawes,? Cornelius A. Rietveld,® Jason D. Boardman®

a) New York University; b} University of Colorado, Boulder; c) Erasmus University



Replicability and Robustness of Genome-

Wide-Association Studies for Behavioral . . e
Traits Predicts within
Cornelius A. Rietveld!?, Dalton Conley?, Nicholas Eriksson?, fa m I I I e S

Tonu Esko®, Sarah E. Medland®, Anna A. E. Vinkhuyzen’,

Jian Yang’, Jason D. Boardman®’, Christopher F. Chabris'®,
Christopher T. Dawes!!, Benjamin W. Domingue®, David A. Hinds?,
Magnus Johannesson!?, Amy K. Kiefer?, David Laibson!3,

Patrik K. E. Magnusson'®, Joanna L. Mountain®, Sven Oskarsson'®,
Olga Rostapshova!?, Alexander Teumer'®, Joyce Y. Tung?,

Peter M. Visscher”!7, Daniel J. Benjamin!®, David Cesarini'®??,
Philipp D. Koellinger?*'| and the Social Science Genetics
Association Consortium

b
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Fig. 1. Absolute value of the effect on years of schooling (EduYears) of a change inone reference allele for each of
the three individual single nucleotide polymorphisms (SNPs) as a function of SNP and sample (a) and absolute value
of the effect on years of schooling of a 1-80 change in palygenic score (including all SNPs) as a function of study
and type of analysis (b). Bocause s9320913 was unavailable in the 23andMe data, we used 12206087 as a (very
reliable) proxy (8 = 99 see Section 2.3 in the Supplemental Material). Emor bars show 953% confidence intervals,
QIMR = Queensland Institute of Medical Research; STR = Swedish Twin Registry; FHS = Framingham Heart Study;
PC = principal component.



Predicts within
families.

AERAOPEN

Home Articles Submit a Manuscript About the Journal

Polygenic Influence on Educational Attainment

New Evidence From the National Longitudinal Study of Adoleseent to Adult Health

Benjamin W. Domingue, Daniel W. Belsky, Dalton Conley, Kathleen Mullan Harris, Jason D. Boardman

TABLE 3
Model Estimates of Polygenic Score on Educational Attainment

EA respondents AA respondents
Estimate SE pv N Model ##  Estimate SE pv N Model 72
Model 1: [i; 0.37 0.08 7.5E-07 917 0.06 0.20 0.09 2.1E-02 677 0.02
Model 2A: Bur 0.30 0.07 3.1E-05 901 0.16 0.22 0.09 1.0E-02 671 0.04
Model 2B: Bu- 0.29 0.08 1.4E-04 762 0.23 0.14 0.09 1.2E-01 556 3
Model 2: Bu- 0.26 0.07 5.4E-04 752 0.26 0.14 0.09 1.2E-01 555 0.12
Model 3: Bw 0.35 0.11  23E-03 808 0.74

Note. Model 1 captures the estimated effect of the polygenic score in unrelated individuals (where the standard error is adjusted for the clustering) adjusting
for age and the top 10 PCs. Model 2 adds controls related to parental education and neighborhood disadvantage to Model 1. Model 2A and Model 2B are,
respectively, restricted versions of Model 2 where the parental education coefficient and neighborhood coefficients are forced to zero, respectively. Model 3
focuses within family using sibling fixed effects (still adjusting for the age of the respondents).



Robust prediction, now what?

©




Robust prediction, now what?

Developmental
Pathways

Broader
outcomes

And nothing is necessarily
constant over time!

—————————————————

Environments

Possibilities
 Developmental
pathways &

broader
outcomes

e Association and
moderation by
environment

* Dynamics (as
function of birth
cohort)
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Genetic Variation Associated with Differential
Educational Attainment in Adults Has Anticipated CrossMark
Associations with School Performance in Children

Mary E. Ward', George McMahon', Beate St Pourcain'*?, Davi - -
Daniel J. Benjamin’, Philipp D. Koellinger™®®, David Cesarini®
Association Consortium, George Davey Smith', Nicholas J. Tim
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Figure 2. Histogram of allele score, with linear relationships
between SATS z-scores and the allele score superimposed. The
unweighted allele score is created from three 5MPs rs9320913,
rs11584700 and red4B851266. Each unit indease in the allele score
corresponds to an individual having an additional educational
attainment increasing allele. The density for the allele score taking
the value & is 00015, which is too small to be visible in this figure. The
linear relationships with 95%Cls from our regressions of SATS 2soores
on allele score are superdmposed. The English regression is represented
by a black line with grey 95%Cl, and mathematics by a grey line with
black 95%CL

doi:10.1371/j ournal pone. 01002 48 g 002



One obvious pathway from genetics to
educational attainment is cognition.

Genetic link between family SES and childrer’s educational adhievement @
E Krapohl and R Plomin
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Figure 2 Genome-wide polygenic scores (GPS) for years of schooling in adults (Rietveld et al ') predict variance (R%) in children's educational
achievernent (General Certficate of Secondary Education (GCSE), family socioeconomic status (SES), inteligence and educational
achieverment after controlling for intelligence (GCSEIQ) GPS were created using different significance thresholds for inclusion of varants for

years of education, mnging from P=0.01 to 0.50, indicated by heat colors. The uncorrected P-values above each bar indicate the statistical
significance of the observed association between the GP5S and the respective trait.



But there are other candidates.

Polygenic Scores Associated With Educational
Attainment in Adults Predict Educational
Achievement and ADHD Symptoms in Children

Eveline L. de Zeeuw,"** Catharina E.M. van Beijsterveldt,"” Tina J. Glasner,* M. Bartels,'”

Erik A. Ehli,® Gareth E. Davies,’ James J. Hudziak,* Social Science Genetic Association Consortium,
Cornelius A. Rietveld,® Maria M. Groen-Blokhuis,"? Jouke Jan Hottenga, Eco J.C. de Geus,'?

and Dorret |. Boomsma'?

Attention Problems/ADHD

O AP - Teacher

O AF = Maother

O ADHD - Teacher
B ADHD - Mother

Explained Variance
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Preliminary Evidence regarding
developmental pathways from Add Health

e Strong associations with wyoss ==
GPA and verbal ability. |
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Preliminary Evidence regarding
developmental pathways from Add Health

e Strong associations with vosab =
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Preliminary Evidence regarding
developmental pathways from Add Health

e Strong associations with wi_vasb =
GPA and verbal ability. N e e
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Preliminary Evidence regarding
developmental pathways from Add Health
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Preliminary Evidence regarding
developmental pathways from Add Health

e Strong associations with

GPA and verbal ability.
* Appearance!
* No connection to # of

friends.

e Associated with smoking,
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her potential
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personality factors.
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What about longer term outcomes?

Low SES Families Middle SES Families High SES Families
1.0 [data from NZ]
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Figure 2. Polygenic scores were socially stratified, but children with higher scores
were more likely to succeed no matter their social origin. The figure shows binned
scatterplots of the genetic association with the Adult Attainment factor for children born
in low, middle, and high socioeconomic-status (SES) families. Each plotted point
represents mean X and Y coordinates for a "bin” of about 10 Study members (total
n=175 for low SES families; 570 for middle SES families; 152 for high SES families). The
solid red line graphs the association in the raw data. The dashed blue line shows the )
subgroup mean level of attainment. The distribution of polygenic scores within each The Genetics of Success _
i : . ; ; How Single-Nucleotide Polymorphisms Associated
subgroup is shown in the boxplots at the bottom of the figure. The black vertical line |y, Educational Attainment Relate to Life-Course
beneath the box plots shows the cohort mean polygenic score. Development

Daniel W. Belsky1:2 1



How well does the polygenic score predict
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How well does the polygenic score predict
over time?

0.4 06

0.2

Predicted std phenotype
02 0.0

-0.4

-0.6

Education *

1920 1925 1830 1935 1940 1945 1950 1935

*For an individual born in 1919, an
additional standard deviation of
educational genetic endowment as
measured here results in more than half
year of schooling more on average. By
the 1955 birth cohort, that effect had
been reduced by one-third.

eLargely due to changes associated with
finishing high school.

eSimilar trend observed in Sweden
(Okbay et al., 2016, Nature).

[Forthcoming in Sociological Science]



Switching Course to BMI
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Figure 2. Life-course growth curves for children with high, low, and average
genetic risk scores (GRSs). Individuals with higher-obesity GRSs were larger
and grew more rapidly as children and adults. The solid line represents the
population mean trajectory (average genetic risk). Dashed lines are for
subgroups within 1 SD of the GRS (high and low genetic risk). Trajectories
were derived from the life-course growth model (intercept fitted at 13 years
of age; linear and quadratic slopes fitted during ages 3-13 years and 13-38
years), including intercept and linear slope effects for the GRS. Analyses
included 856 individuals of European descent. Body mass index is calculated
as weight in kilograms divided by height in meters squared.

Figure 3. Obesity prevalence amaong low and high genetic risk cohort
members in their second, third, and fourth decades of life and chronically
across ages 15 to 38 years. Individuals with higher genetic risk scores
(GRSs) were more likely to be obese across 2 decades of adult follow-up.
Error bars and numbers in parentheses reflect 95% Cls. The GRS was
dichotomized at the sample mean to create low and high genetic risk
categories. Relative risks (RRs) (95% Cls) are reported from Poisson
regression models adjusted for sex that included the 856 individuals of
European descent in the analysis sample.

Polygenic Risk, Rapid Childhood Growth,
and the Development of Obesity

Evidence From a 4-Decade Longitudinal Study

Daniel W. Belsky, PhD; Terrie E. Moffitt, PhD; Renate Houts, PhD; Gary G. Bennett, PhD; Andrea K. Biddle, PhD;
James A. Blumenthal, PhD; James P. Evans, MD, PhD; Honal.ee Harrington, BA; Karen Sugden, PhD;

Benjamin Williams, BS; Richie Poulton, PhD; Avshalom Caspi, PhD

’



Difference in BMI
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Sugar-Sweetened Beverages and Genetic Risk of Obesity

Qibin Qi, Ph.D., Audrey Y. Chu, Ph.D., Jae H. Kang, Sc.D., Majken K. Jensen, Ph.D., Gary C.
Curhan, M.D., Sc.D., Louis R. Pasquale, M.D., Paul M. Ridker, M.D., M.P.H., David J. Hunter,
M.B., B.S,, Sc.D., Walter C. Willett, M.D., Dr.P.H., Eric B. Rimm, S¢.D., Daniel I. Chasman,
Ph.D., Frank B. Hu, M.D., Ph.D., and Lu Qi, M.D., Ph.D.

Departments of Nutrition (Q.Q., M.K.J., D.J.H., W.CW., EB.R., F.B.H., L.Q.) and Epidemiology
(G.C.C.,D.JH., W.CW., EB.R., F.B.H.), Harvard School of Public Health; and the Divisions of
Preventive Medicine (A.Y.C., P.M.R., D.I.C.), Cardiovascular Disease (P.M.R.), and Genetics
(D.1.C.), and the Channing Division of Network Medicine { JH.K., G.C.C., LR.P.,D.JH., W.C.W_,
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Fig. 3. BMI over the ages of 35-60 by birth cohort for AT/TA-FTO genotype.
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Polygenic Scores

* Exciting area of research.
* Limited by available GWAS

— These have been performed on insufficiently
diverse samples.

* Our knowledge of how individual genetic
variants influence traits can be used in other
manners as well.



3. Mendelian Randomization

* Genes as IVs

Genotype

Unobserved
Confounder

Exposure

Phenotype

http://jamesmcm.github.io/blog/2014/08/17/mendelian/
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Assumptions

Lung Cancer
e Z— X(notX—7)

* No Z—Y
e Z not associated with U



Genotype

Unobserved
Confounder

Exposure

No Pleiotropy Phenotype

Pleiotropy is the phenomena whereby one gene can affect many (even seemingly unrelated)
phenotypes. Mendelian Randomisation makes the assumption of no pleiotropy.

In this case, this means that we assume the genotype is only influencing the phenotype via the
considered exposure. I.e. ApoE2 only affects serum cholesterol levels, and cannot affect cancer
risk by other, unobserved means.

This is a big assumption, and prior knowledge is necessary. If possible, using multiple,
independent SNPs which act through the same path, can help to alleviate this issue, because, if
they are all consistent then it is unlikely that they would all have other pathways causing the
same change in phenotype. But note that they must be independent, and so cannot be in
Linkaee Diseauilibrium.
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Alcohol Intake and Blood Pressure: A Systematic Review
Implementing a Mendelian Randomization Approach

Lina Chen, George Davey Smith, Roger M Harbord, Sarah J Lewis

Published: March 4, 2008 = http://dx.doi.org/10.137 L/journal.pmed.0050052

Background

Alcohol has been reported to be a common and modifiable risk factor for hyperiension.
However, observational studies are subject to confounding by other behavioural and
sociodemographic factors, while clinical trials are difficult to implement and have limited follow-
up time. Mendelian randomization can provide robust evidence on the nature of this associatiol
by use of a common polymorphism in aldehyde dehydrogenase 2 (ALDHZ2) as a surrogate for
measuring alcohol consumption. ALDHZ encodes a major enzyme involved in alcohol
metabolism. Individuals homozygous for the null variant (*2*2) experience adverse symptoms
when drinking alcohol and consequently drink considerably less alcohol than wild-type
homozygotes (*1*1) or heterozygotes. We hypothesise that this polymorphism may influence
the risk of hypertension by affecting alcohol drinking behaviour.
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Data Type Reference No. of Alcohol Exposure Groups, Sex Alcohol Status by Genotype®
Participants Grams of Ethanol per Day *1%1 *1%2 #2%2
Categorical data Saito et al, 2003 [28] 335 <186 Male 39 87 21
18.6-37 54 33 0
>37.1 81 15 0
Ex-drinker 3 1 0
Yamada et al,, 2002 [29] 828 Nondrinker Male 21 56 28
<2.26 75 86 16
2.27-47.4 114 75 2
47.5-71.1 210 64 2
=71.1 63 16 0
Continuous data Amamoto et al., 2002 [18] 2,035 N/D Male 26.3 15.5 0.66
N/D Female 1.4 0.5 0.03
Hashimoto et al., 2002 [13] 133 N/D Male 549 + 13.1 51 =98 —
Mackenzie et al.,, 2005 [12] 28 N/D Mixed 23.7 = 395 316 %= 395 —
Okayama et al., 1994 [14] 159 N/D Male 268 = 19.1 176 £ 179 —
Takagi et al,, 2001 [19] 4,057 N/D Male 23.7 = 16.7 115 = 158 1.1 £ 16£
N/D Female 38 6.0 1.2+ 68 0.08 = 6.5
Tsuritani et al, 1995 [20] 403 N/D Male 427 + 28.8 229 = 251 24 * 36




Table 3. Distribution of Potential Confounding Factors by Genotype among Studies Included in the Meta-analysis

Author No. of Covariates Category Covariates by Genotypes” Published
Participants - #yez ez p-"n“lhlnh
Amamoto et al, 2002 [18] 2,035 Sex Male 335 (#.7) 351 (46-9) 63 (B4) —
Fermale 544 (50.1) 555 (4332) B7 (6B} —
Age Male 568 + 15.7 581 *+ 156 52B + 177 0.05
Fermale 54.8 + 160 55.1 + 154 585 + 143 0.12
BMI Male 229 + 30 73i+28 2189 + 27 0.004
Farmale 225 + 31 n4+33 224 + 31 0.89
Currert smoker Make 176 (52.5) 173 (493) 36 (56.5) 0.49
Fermale 39 (8.1} 48 (B.6) 9 (10.5) 0.16
Cigamatte smoking,  Male 10.4 108 115 0.78
cigarettes per day
Fermale 0.69 1.04 1.02 0.17
Hashirmoto et al, 2002 [13] 133 Age —_ 46.0 = 7.1 42 +58 — =(0.05
BMI — 225 + 20 n2+16 — =0.05
Smoking cigarettes — 142 + 163 127 £ 138 — =0.05
per day
Exercise, imes per  — 26 + 31 26 +27 — =0.05
month
harai et al, 2004 [31] 1849 Sex Male 443 (51.5) 348 (40.8) 67 (7-8) -
Fermale 520 (523) 381 (383) 93 (9.4} —
Mackenzie at al, 2005 [12] 28 Sax Male B (47.1) 9 (529) — —
Age Fermale 9 (81.8) 2(1832) - —
- TN W £5(5 3+ 10 - —
BMI — 2B+ 31 20 +34(5 2BO*X31  — -
Mishimura et al, 2002 [11] 16 Age = 221 £33 H1+34 =— —_
Okayama et al, 1994 [14] 159 Age — 457 + 102 480 94 — -
BMI — 229 + 28 Na+2T — —_
Saito et al, 2003 [28] 335 Age —_ 533 + B6 534 + BB 524 + B.4 0.89
BMI —_ 23.5 + 3.0 713+ 33 230 + 25 on
Smoking Current smokers 100 (56.3) 77 (559) 14 (66.7) 0.12
Mever-smokers 49 (27.8) 25 (184) 4 (19.1)
Ex-smokers 2B (155) 35 (257) 3(143)
Physical activity Inactive 66 (37.5) 52 (382) 3 (143 032
Moderate 50 (28.4) 41 (302) B (3B.1}
Active 60 (34.1) 43 (31.6) 10 (47 8)
Takagi et al, 2001 [19] 4,057 Sex Male 924 (48.3) 825 (43.0) 170 (88) -
Fernale 1,112 (52.0) 838 (39.2) 188 (8.8) —
Age Male 60.2 + 122 616+ 115 613+ 17 0.05
Fermale 585 + 133 596 + 116 584+ 123 0.09
BMI Male 232 + 30 e *+29 231 % 26 002
Fermale 224 + 313 B1+248 223+ 27 on
Current smoker Male 367 (39.7) 326 (39.5) 61 (35.8) .5
Female 93 (B.4) 6B (8.32) 13 (75) n.s
Tsuritani et al, 1995 [20] 403 Age — 464 + 5.8 457 + 50 464 + 4.4 n.s
BMI — 247 + 28 M3+ 30 249 + 2.4 n.s



alcohol-BP

effect (95% CI)
Diastolic:
Amamoto et al., 2002 [18] —_—— 0.17 (0.06, 0.28)
Takagi et al., 2001 [19] — 0.15 (0.08, 0.22)
Tsuritani et al., 1995 [20] — 0.16 (0.07, 0.26)
Subtotal (I? = 0.0%, p = 0.970) 0.16 (0.11, 0.21)

Systolic:
Amamoto et al., 2002 [18] — 0.20(0.12, 0.47)
Takagi et al., 2001 [19] —— 0.28 (0.16, 0.40)
Tsuritani &t al., 1995 [20] —_—— 0.18 (0.05, 0.31)
Subtotal (I = 0.0%, p = 0.439) <> 0.24 (0.16, 0.32)
T 1T T T 1
0 1 2 3 4 5
mmHg per g/day

Methods and Findings

We carried out fixed effect meta-analyses of the ALDH2 genotype with blood pressure (five
studies, n = 7,658) and hypertension (three studies, n = 4,219) using studies identified via
systematic review. In males, we obtained an overall odds ratio of 2.42 (95% confidence interval
[CI] 1.66-3.55, p = 4.8 X 107%) for hypertension comparing *1*1 with *2*2 homozygotes and an
odds ratio of 1.72 (95% Cl 1.17-252, p = 0.006) comparing heterozygotes (surrogate for
moderate drinkers) with *2*2 homozygotes. Systolic blood pressure was 7.44 mmHg (95% Cl
539-949, p=1.1 X 107" greater among *1*1 than among *2*2 homozygotes, and 4.24 mmHg
(959 CI 2.18-6.31, p = 0.00005) greater among heterozygotes than among *2*2 homozygotes.

Conclusions

These findings support the hypothesis that alcohol intake has a marked effect on blood
pressure and the risk of hypertension.
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Methods and Findings

We carried out fixed effect meta-analyses of the ALDH2 genotype with blood pressure (five
studies, n = 7,658) and hypertension (three studies, n = 4,219) using studies identified via
systematic review. In males, we obtained an overall odds ratio of 2.42 (95% confidence interval
[CI] 1.66-3.55, p = 4.8 X 107%) for hypertension comparing *1*1 with *2*2 homozygotes and an
odds ratio of 1.72 (95% Cl 1.17-252, p = 0.006) comparing heterozygotes (surrogate for
moderate drinkers) with *2*2 homozygotes. Systolic blood pressure was 7.44 mmHg (95% Cl
539-949, p=1.1 X 107" greater among *1*1 than among *2*2 homozygotes, and 4.24 mmHg
(959 CI 2.18-6.31, p = 0.00005) greater among heterozygotes than among *2*2 homozygotes.

Conclusions

These findings support the hypothesis that alcohol intake has a marked effect on blood
pressure and the risk of hypertension.
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Causal Relationship between Obesity and Vitamin D

Status: Bi-Directional Mendelian Randomization Analysis
of Multiple Cohorts

Abstract

Background: Obesity is associated with vitamin D deficiency, and both are areas of active public health concern. We
explored the causality and direction of the relationship between body mass index (BMI) and 25-hydroxyvitamin D [25(0OH)D]
using genetic markers as instrumental variables (IVs) in bi-directional Mendelian randomization (MR) analysis.



Genotyping

We selected| 12 established BMI-related SNPs| (fat mass and
obesity-associated, [F70]- rs9939609, melanocortin 4 receptor
[MC4R]- rs17782313, transmembrane protein 18 [TMEM]IS8]-
rs2867125, SH2B adaptor protein 1 [SH2BI|- rs7498665, brain-
derived neurotrophic factor [BDNF]- rs4074134, potassium
channel tetramerisaion domain contamning 15 [KCTDI15]-
rs29941, ets variant 5 [ETVD]- rs7647305, SEC16 homolog B
[SEC16B]- rs10913469, Fas apoptotic inhibitory molecule 2
[FAIMZ]- rs7138803, neuronal growth regulator 1 [NEGRI]|-
rs3101336, mitochondrial carrier 2 [M7TCH?]- rs10838738, and
glucosamine-6-phosphate deaminase 2 [GNPDAZ]- rs10938397)
for our analysis based on the study by Li et al. [24] and previously
published genome-wide association studies for obesity-related

traits [23,25,26]. |The four vitamin D-related SNPs (DHCR7-

rs12785878, CYP2RI- rs10741657, GC- 152282679, and CYP24A1-
rs6013897) were chosen on the basis of the recent genome-wide
association study on 25(OH)D [27]. The studies that did not have
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Figure 3. Meta-analysis of the BMI allele score association with 25(OH)D (n=31,120). 95% confidence intervals given by error bars.
doi:10.1371/journal pmed.1001383.9003
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Conclusions: On the basis of a bi-directional genetic approach that limits cenfoundmg, our study suggests that a higher BMI

leads to lower 25(0H)D, while any effects of lower 25(0OH)D increasing BMI are likely to be small. Population level
interventions to reduce BMI are expected to decrease the prevalence of vitamin D deficiency.
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Mendelian Randomization

* With small number of variants:
— Weak instrument
* With large numbers of variants
— Pleiotropy is likely to be a concern.

— Issues regarding population stratification will
become more difficult to address.



Quick Summary

* GCTA

— Chip heritability can be a useful concept,

especially when exploring issues above & beyond
simple univariate heritability.



Quick Summary

* Polygenic Scores
— How do biological differences, in form of

genetics, (1) manifest as individual differences
and (2) interplay with environments.

* Due to mechanics of GWAS, PGS offer conservative
test of GxE.

e Mendelian Randomization

— How can we leverage biological differences to
better understand other associations?
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