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Outline

• Introduction to genome-wide association studies (GWAS) 
• Research enabled by GWAS
• Obtaining Add Health data
• Further considerations



Genetics: Difficult to Escape



Genetics: Difficult to Escape

Genetic Research Definition: Research into the 
cause, transmission, amelioration, elimination, or 

enhancement of inherited disorders and traits.



“Inherited Disorders” Encompasses a Broad 
Spectrum of Diseases and Traits



Definition: Genome-Wide Association Study 
(GWAS)
• One of many contemporary tools to evaluate the genetic basis of 

disease/phenotypes
• Study that surveys most of the genome for genetic causal variants.  
• Capitalizes on the strengths of association studies without having to 

guess the identity of candidate genes.
• Enables testing of multiple, genome-wide (~40 million) variants 

without any prior hypothesis (other than the trait is heritable)
• GWAS genetic metric: the SNP

Hirschhorn JN et al. (2005) Nature Reviews Genetics 6: 95-100. 6



Single Nucleotide Polymorphisms (SNPs)

• Single nucleotide polymorphisms 
( SNPs) are DNA sequence 
variations that occur when a 
single nucleotide (A,T,C,or G) in 
the genome sequence is altered

• Millions of SNPs in the genome!







NHGRI-EBI Catalog, http://www.ebi.ac.uk/gwas/

Published GWAS through 01/2016
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SNP Data Enable a Wide Range of Investigations 
in Addition to Genome-Wide Scans



E.g, Limit Inference to Specific Genes

PMID:25337070



E.g., Polygenic Scores (PGS)

• One-variable summary score constructed from SNPs 
previously associated with phenotype/disease of interest 
(i.e. via large GWAS)

• AKA genetic risk score
• Estimation strategy:

• Locate dataset with large-scale genotyping and measure of phenotype of 
interest (e.g. blood pressure in Add Health)

• Identify published GWAS, including associated lead SNPs and effect 
estimates

• Predict participant-specific phenotype (e.g. blood pressure) using 
participant-specific genotypes and published lead SNP effect estimates



Estimation of a Cardiovascular PGS



PGS: Application to Kidney Disease

• One-variable summary score constructed from SNPs associated with 
phenotype/disease of interest

PMID:20383146



E.g., Polygenic Scores (PGS)



E.g., Gene-Environment Interaction



E.g., Gene-Environment Interaction



How Can You Obtain Add Health 
GWAS Data?



dbGaP: Add Health Genotype Warehouse
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dbGaP: Add Health Genotype Warehouse



dbGaP: Add Health Genotype Warehouse

Add Health Phenotype Data Are Available 
Through the Add Health Study (UNC) 



Analysis Best Practices/Hints

• Do not discount the large number of existing resources!
• Team science/consortia
• Statistical power
• Race/ethnicity heterogeneity and admixture
• Intergenic regions
• Family structure/clustering
• Analytic pipeline



Summary Results from Many Large Consortia 
Are Available Online
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Team Science/Consortia

• Joining a consortium is often the first step in GWAS



Team Science/Consortia

• Joining a consortium is often the first step in GWAS

But, wouldn’t it be simpler, 
or at least faster, to just go it 
alone? 



Statistical Power: Gene-Environment GWAS
N=80,000
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Statistical Power: Gene-Environment GWAS
N=80,000
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Statistical Power: Gene-Environment GWAS
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N=80,000



Statistical Power: Gene-Environment GWAS

Why is statistical power so 
challenging? 

35

N=80,000



Statistical Power: Gene-Environment GWAS

We need to correct for 1,000,000 
statistical tests when interrogating 

genome! 
α = 0.05/1M or 5x10-8

Correction for only 1M tests given correlation in human 
genome

36

N=80,000



Race/Ethnicity Heterogeneity

PMID:21753830



Race/Ethnicity Heterogeneity

Why are genomic studies in non-
European populations necessary?

PMID:21753830



Limited Studies Suggest that Genes Generalize 
Across Global Populations…
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Race/Ethnicity Heterogeneity

Why are genomic studies in non-
European populations necessary?

PMID:12154384







E.g., Gene-Environment Interaction



The rs1045642 A Allele: 
Substantial Variation Across Global Populations

Approximately 33% (i.e. 0.57^2) of the SAS 
population is homozygous for the causal 
allele compared to 2.3% (i.e. 0.15^2) of the 
AFR population.
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Linkage Disequilibrium (LD)

• Non-random assortment of alleles at 2+ 
SNPs

• Population-specific!
• The closer the SNPs, the stronger the LD 

since recombination will have occurred at a 
lower rate

• Two markers are in LD if knowing the allele 
at one marker allows you to predict the 
allele at the other marker

• E.g. in a population where there are AB, Ab, 
and aB haplotypes at adjacent markers, but no 
ab haplotypes, if we know an individual has a b 
allele, we know that s/he also has at least one A 
allele.



Linkage Disequilibrium (LD): SNPs are Inherited 
in Blocks
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Race/Ethnicity Heterogeneity

Take-home messages: 
1 – Genes generalize, but variation in SNPs exist.
2 – Studies in non-European populations are needed. 

A. Implications for gene-environment?
3 – Genetic analyses should be population-specific.

A. Analyses also need to address within-population variation 
(e.g. with ancestral principal components.)





Population Structure within Europe

PMID:18758442



Do Not Ignore Intergenic Regions

PMID:25337070



Coronary Heart Disease GWAS and 9p21 
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9p21.3: Replicated Locus with Zero Prior 
Biologic Plausibility

The risk interval narrowed to a 
block approximately 58 kb 
wide that did not contain any 
annotated genes. 
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9p21.3: Replicated Locus with Zero Prior 
Biologic Plausibility
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Family Structure/Clustering

• Add Health GWAS data has a non-negligible number of related 
participants

• Failure to address lack of independence between family members leads to 
anti-conservative P-values

• Most “canned” software (e.g. PLINK, ProbAbel) does not address relatedness
• Option 1 (easiest): exclude all but one member of each first-degree 

relative set (kinship matrix provided on dbGap) and proceed as 
unrelated.

• Option 2 (more work, more power): model the family structure
• School clustering also requires extension of models to include 

additional variance components



Analytic Pipeline: Addresses Add Health Data 
Challenges
• GWAS tools have been published that can accommodate Add Health 

analysis challenges
• Implementation may be challenging if modest Unix/R/python 

expertise
• Scalability remains a challenge in GWAS setting. 

• Linear mixed models run locally can be used when examining a limited 
number of SNPs
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Conclusions

• Add Health GWAS data offer a wealth of opportunities for advancing 
the understanding of human phenotypes and traits

• Very unique resource: few studies of nationally representative populations 
beginning in adolescence are available

• Genomics data are challenging at first to use, but numerous resources 
exist

• Consider establishing relationships with existing consortia/engaging a genetic 
epidemiologist etc.

• Genetics of “social science” traits, gene-environment interactions etc. 
remain largely unexplored
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