Explainable machine learning framework for predicting long-term cardiovascular disease risk among adolescents

Citation

Salah, H. & Srinivas, S. (2022). Explainable machine learning framework for predicting long-term cardiovascular disease risk among adolescents. Scientific Reports. vol. 12 (1) , PMCID: PMC9763353

Abstract

Although cardiovascular disease (CVD) is the leading cause of death worldwide, over 80% of it is preventable through early intervention and lifestyle changes. Most cases of CVD are detected in adulthood, but the risk factors leading to CVD begin at a younger age. This research is the first to develop an explainable machine learning (ML)-based framework for long-term CVD risk prediction (low vs. high) among adolescents. This study uses longitudinal data from a nationally representative sample of individuals who participated in the Add Health study. A total of 14,083 participants who completed relevant survey questionnaires and health tests from adolescence to young adulthood were chosen. Four ML classifiers [decision tree (DT), random forest (RF), extreme gradient boosting (XGBoost), and deep neural networks (DNN)] and 36 adolescent predictors are used to predict adulthood CVD risk. While all ML models demonstrated good prediction capability, XGBoost achieved the best performance (AUC-ROC: 84.5% and AUC-PR: 96.9% on testing data). Besides, critical predictors of long-term CVD risk and its impact on risk prediction are obtained using an explainable technique for interpreting ML predictions. The results suggest that ML can be employed to detect adulthood CVD very early in life, and such an approach may facilitate primordial prevention and personalized intervention.

Keyword(s)

Adolescent; Adult; Cardiovascular Diseases; Humans; Machine Learning; Neural Networks, Computer; Risk Factors; Young Adult;

Notes

Export Date: 03 January 2023; Cited By: 0

Reference Type

Journal Article

Journal Title

Scientific Reports

Author(s)

Salah, H.
Srinivas, S.

Year Published

2022

Volume Number

12

Issue Number

1

DOI

10.1038/s41598-022-25933-5

PMCID

PMC9763353

Reference ID

9924